Steam爬虫JS代码

Steam爬虫JS代码


navigator = {};
var dbits;

// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary&0xffffff)==0xefcafe);

// (public) Constructor
function BigInteger(a,b,c) {
    if(a != null)
        if("number" == typeof a) this.fromNumber(a,b,c);
        else if(b == null && "string" != typeof a) this.fromString(a,256);
        else this.fromString(a,b);
}

// return new, unset BigInteger
function nbi() { return new BigInteger(null); }

// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.

// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i,x,w,j,c,n) {
    while(--n >= 0) {
        var v = x*this[i++]+w[j]+c;
        c = Math.floor(v/0x4000000);
        w[j++] = v&0x3ffffff;
    }
    return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i,x,w,j,c,n) {
    var xl = x&0x7fff, xh = x>>15;
    while(--n >= 0) {
        var l = this[i]&0x7fff;
        var h = this[i++]>>15;
        var m = xh*l+h*xl;
        l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
        c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
        w[j++] = l&0x3fffffff;
    }
    return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i,x,w,j,c,n) {
    var xl = x&0x3fff, xh = x>>14;
    while(--n >= 0) {
        var l = this[i]&0x3fff;
        var h = this[i++]>>14;
        var m = xh*l+h*xl;
        l = xl*l+((m&0x3fff)<<14)+w[j]+c;
        c = (l>>28)+(m>>14)+xh*h;
        w[j++] = l&0xfffffff;
    }
    return c;
}
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
    BigInteger.prototype.am = am2;
    dbits = 30;
}
else if(j_lm && (navigator.appName != "Netscape")) {
    BigInteger.prototype.am = am1;
    dbits = 26;
}
else { // Mozilla/Netscape seems to prefer am3
    BigInteger.prototype.am = am3;
    dbits = 28;
}

BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1<<dbits)-1);
BigInteger.prototype.DV = (1<<dbits);

var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2,BI_FP);
BigInteger.prototype.F1 = BI_FP-dbits;
BigInteger.prototype.F2 = 2*dbits-BI_FP;

// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr,vv;
rr = "0".charCodeAt(0);
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;

function int2char(n) { return BI_RM.charAt(n); }
function intAt(s,i) {
    var c = BI_RC[s.charCodeAt(i)];
    return (c==null)?-1:c;
}

// (protected) copy this to r
function bnpCopyTo(r) {
    for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
    r.t = this.t;
    r.s = this.s;
}

// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
    this.t = 1;
    this.s = (x<0)?-1:0;
    if(x > 0) this[0] = x;
    else if(x < -1) this[0] = x+DV;
    else this.t = 0;
}

// return bigint initialized to value
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }

// (protected) set from string and radix
function bnpFromString(s,b) {
    var k;
    if(b == 16) k = 4;
    else if(b == 8) k = 3;
    else if(b == 256) k = 8; // byte array
    else if(b == 2) k = 1;
    else if(b == 32) k = 5;
    else if(b == 4) k = 2;
    else { this.fromRadix(s,b); return; }
    this.t = 0;
    this.s = 0;
    var i = s.length, mi = false, sh = 0;
    while(--i >= 0) {
        var x = (k==8)?s[i]&0xff:intAt(s,i);
        if(x < 0) {
            if(s.charAt(i) == "-") mi = true;
            continue;
        }
        mi = false;
        if(sh == 0)
            this[this.t++] = x;
        else if(sh+k > this.DB) {
            this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
            this[this.t++] = (x>>(this.DB-sh));
        }
        else
            this[this.t-1] |= x<<sh;
        sh += k;
        if(sh >= this.DB) sh -= this.DB;
    }
    if(k == 8 && (s[0]&0x80) != 0) {
        this.s = -1;
        if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
    }
    this.clamp();
    if(mi) BigInteger.ZERO.subTo(this,this);
}

// (protected) clamp off excess high words
function bnpClamp() {
    var c = this.s&this.DM;
    while(this.t > 0 && this[this.t-1] == c) --this.t;
}

// (public) return string representation in given radix
function bnToString(b) {
    if(this.s < 0) return "-"+this.negate().toString(b);
    var k;
    if(b == 16) k = 4;
    else if(b == 8) k = 3;
    else if(b == 2) k = 1;
    else if(b == 32) k = 5;
    else if(b == 4) k = 2;
    else return this.toRadix(b);
    var km = (1<<k)-1, d, m = false, r = "", i = this.t;
    var p = this.DB-(i*this.DB)%k;
    if(i-- > 0) {
        if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
        while(i >= 0) {
            if(p < k) {
                d = (this[i]&((1<<p)-1))<<(k-p);
                d |= this[--i]>>(p+=this.DB-k);
            }
            else {
                d = (this[i]>>(p-=k))&km;
                if(p <= 0) { p += this.DB; --i; }
            }
            if(d > 0) m = true;
            if(m) r += int2char(d);
        }
    }
    return m?r:"0";
}

// (public) -this
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }

// (public) |this|
function bnAbs() { return (this.s<0)?this.negate():this; }

// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
    var r = this.s-a.s;
    if(r != 0) return r;
    var i = this.t;
    r = i-a.t;
    if(r != 0) return r;
    while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
    return 0;
}

// returns bit length of the integer x
function nbits(x) {
    var r = 1, t;
    if((t=x>>>16) != 0) { x = t; r += 16; }
    if((t=x>>8) != 0) { x = t; r += 8; }
    if((t=x>>4) != 0) { x = t; r += 4; }
    if((t=x>>2) != 0) { x = t; r += 2; }
    if((t=x>>1) != 0) { x = t; r += 1; }
    return r;
}

// (public) return the number of bits in "this"
function bnBitLength() {
    if(this.t <= 0) return 0;
    return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
}

// (protected) r = this << n*DB
function bnpDLShiftTo(n,r) {
    var i;
    for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
    for(i = n-1; i >= 0; --i) r[i] = 0;
    r.t = this.t+n;
    r.s = this.s;
}

// (protected) r = this >> n*DB
function bnpDRShiftTo(n,r) {
    for(var i = n; i < this.t; ++i) r[i-n] = this[i];
    r.t = Math.max(this.t-n,0);
    r.s = this.s;
}

// (protected) r = this << n
function bnpLShiftTo(n,r) {
    var bs = n%this.DB;
    var cbs = this.DB-bs;
    var bm = (1<<cbs)-1;
    var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
    for(i = this.t-1; i >= 0; --i) {
        r[i+ds+1] = (this[i]>>cbs)|c;
        c = (this[i]&bm)<<bs;
    }
    for(i = ds-1; i >= 0; --i) r[i] = 0;
    r[ds] = c;
    r.t = this.t+ds+1;
    r.s = this.s;
    r.clamp();
}

// (protected) r = this >> n
function bnpRShiftTo(n,r) {
    r.s = this.s;
    var ds = Math.floor(n/this.DB);
    if(ds >= this.t) { r.t = 0; return; }
    var bs = n%this.DB;
    var cbs = this.DB-bs;
    var bm = (1<<bs)-1;
    r[0] = this[ds]>>bs;
    for(var i = ds+1; i < this.t; ++i) {
        r[i-ds-1] |= (this[i]&bm)<<cbs;
        r[i-ds] = this[i]>>bs;
    }
    if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
    r.t = this.t-ds;
    r.clamp();
}

// (protected) r = this - a
function bnpSubTo(a,r) {
    var i = 0, c = 0, m = Math.min(a.t,this.t);
    while(i < m) {
        c += this[i]-a[i];
        r[i++] = c&this.DM;
        c >>= this.DB;
    }
    if(a.t < this.t) {
        c -= a.s;
        while(i < this.t) {
            c += this[i];
            r[i++] = c&this.DM;
            c >>= this.DB;
        }
        c += this.s;
    }
    else {
        c += this.s;
        while(i < a.t) {
            c -= a[i];
            r[i++] = c&this.DM;
            c >>= this.DB;
        }
        c -= a.s;
    }
    r.s = (c<0)?-1:0;
    if(c < -1) r[i++] = this.DV+c;
    else if(c > 0) r[i++] = c;
    r.t = i;
    r.clamp();
}

// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a,r) {
    var x = this.abs(), y = a.abs();
    var i = x.t;
    r.t = i+y.t;
    while(--i >= 0) r[i] = 0;
    for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
    r.s = 0;
    r.clamp();
    if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
}

// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
    var x = this.abs();
    var i = r.t = 2*x.t;
    while(--i >= 0) r[i] = 0;
    for(i = 0; i < x.t-1; ++i) {
        var c = x.am(i,x[i],r,2*i,0,1);
        if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
            r[i+x.t] -= x.DV;
            r[i+x.t+1] = 1;
        }
    }
    if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
    r.s = 0;
    r.clamp();
}

// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m.  q or r may be null.
function bnpDivRemTo(m,q,r) {
    var pm = m.abs();
    if(pm.t <= 0) return;
    var pt = this.abs();
    if(pt.t < pm.t) {
        if(q != null) q.fromInt(0);
        if(r != null) this.copyTo(r);
        return;
    }
    if(r == null) r = nbi();
    var y = nbi(), ts = this.s, ms = m.s;
    var nsh = this.DB-nbits(pm[pm.t-1]);    // normalize modulus
    if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
    else { pm.copyTo(y); pt.copyTo(r); }
    var ys = y.t;
    var y0 = y[ys-1];
    if(y0 == 0) return;
    var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
    var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
    var i = r.t, j = i-ys, t = (q==null)?nbi():q;
    y.dlShiftTo(j,t);
    if(r.compareTo(t) >= 0) {
        r[r.t++] = 1;
        r.subTo(t,r);
    }
    BigInteger.ONE.dlShiftTo(ys,t);
    t.subTo(y,y);    // "negative" y so we can replace sub with am later
    while(y.t < ys) y[y.t++] = 0;
    while(--j >= 0) {
        // Estimate quotient digit
        var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
        if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {    // Try it out
            y.dlShiftTo(j,t);
            r.subTo(t,r);
            while(r[i] < --qd) r.subTo(t,r);
        }
    }
    if(q != null) {
        r.drShiftTo(ys,q);
        if(ts != ms) BigInteger.ZERO.subTo(q,q);
    }
    r.t = ys;
    r.clamp();
    if(nsh > 0) r.rShiftTo(nsh,r);    // Denormalize remainder
    if(ts < 0) BigInteger.ZERO.subTo(r,r);
}

// (public) this mod a
function bnMod(a) {
    var r = nbi();
    this.abs().divRemTo(a,null,r);
    if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
    return r;
}

// Modular reduction using "classic" algorithm
function Classic(m) { this.m = m; }
function cConvert(x) {
    if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
    else return x;
}
function cRevert(x) { return x; }
function cReduce(x) { x.divRemTo(this.m,null,x); }
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;

// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
//         xy == 1 (mod m)
//         xy =  1+km
//   xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
    if(this.t < 1) return 0;
    var x = this[0];
    if((x&1) == 0) return 0;
    var y = x&3;        // y == 1/x mod 2^2
    y = (y*(2-(x&0xf)*y))&0xf;    // y == 1/x mod 2^4
    y = (y*(2-(x&0xff)*y))&0xff;    // y == 1/x mod 2^8
    y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;    // y == 1/x mod 2^16
    // last step - calculate inverse mod DV directly;
    // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
    y = (y*(2-x*y%this.DV))%this.DV;        // y == 1/x mod 2^dbits
    // we really want the negative inverse, and -DV < y < DV
    return (y>0)?this.DV-y:-y;
}

// Montgomery reduction
function Montgomery(m) {
    this.m = m;
    this.mp = m.invDigit();
    this.mpl = this.mp&0x7fff;
    this.mph = this.mp>>15;
    this.um = (1<<(m.DB-15))-1;
    this.mt2 = 2*m.t;
}

// xR mod m
function montConvert(x) {
    var r = nbi();
    x.abs().dlShiftTo(this.m.t,r);
    r.divRemTo(this.m,null,r);
    if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
    return r;
}

// x/R mod m
function montRevert(x) {
    var r = nbi();
    x.copyTo(r);
    this.reduce(r);
    return r;
}

// x = x/R mod m (HAC 14.32)
function montReduce(x) {
    while(x.t <= this.mt2)    // pad x so am has enough room later
        x[x.t++] = 0;
    for(var i = 0; i < this.m.t; ++i) {
        // faster way of calculating u0 = x[i]*mp mod DV
        var j = x[i]&0x7fff;
        var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
        // use am to combine the multiply-shift-add into one call
        j = i+this.m.t;
        x[j] += this.m.am(0,u0,x,i,0,this.m.t);
        // propagate carry
        while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
    }
    x.clamp();
    x.drShiftTo(this.m.t,x);
    if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}

// r = "x^2/R mod m"; x != r
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

// r = "xy/R mod m"; x,y != r
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }

Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;

// (protected) true iff this is even
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }

// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e,z) {
    if(e > 0xffffffff || e < 1) return BigInteger.ONE;
    var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
    g.copyTo(r);
    while(--i >= 0) {
        z.sqrTo(r,r2);
        if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
        else { var t = r; r = r2; r2 = t; }
    }
    return z.revert(r);
}